Difference between revisions of "Weierstrass sigma"
From specialfunctionswiki
(Created page with "Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass $\sigma$ function is defined by $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda^*} \left( 1 - \dfrac...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass $\sigma$ function is defined by | Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass $\sigma$ function is defined by | ||
− | $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda | + | $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda \setminus \{0\}} \left( 1 - \dfrac{z}{w} \right) e^{\frac{z}{w}+\frac{1}{2}(\frac{z}{w})^2}.$$ |
− | + | ||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:38, 24 May 2016
Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass $\sigma$ function is defined by $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda \setminus \{0\}} \left( 1 - \dfrac{z}{w} \right) e^{\frac{z}{w}+\frac{1}{2}(\frac{z}{w})^2}.$$