Difference between revisions of "Peters polynomials"
From specialfunctionswiki
(Created page with "The Peters polynomials $s_n(x)$ are given by $$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$") |
|||
Line 1: | Line 1: | ||
The Peters polynomials $s_n(x)$ are given by | The Peters polynomials $s_n(x)$ are given by | ||
$$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$ | $$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:43, 24 May 2016
The Peters polynomials $s_n(x)$ are given by $$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$