Difference between revisions of "Pidduck polynomial"
From specialfunctionswiki
(Created page with "The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$") |
|||
Line 1: | Line 1: | ||
The Pidduck polynomials $s_n(x)$ are given by | The Pidduck polynomials $s_n(x)$ are given by | ||
$$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$ | $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:43, 24 May 2016
The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$