Difference between revisions of "Airy zeta function"
From specialfunctionswiki
Line 14: | Line 14: | ||
[http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]<br /> | [http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]<br /> | ||
[http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)] | [http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:51, 24 May 2016
The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$
Properties
Proposition: The following formula holds: $$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
Proof: █
References
Airy zeta function (Wikipedia)
Airy zeta function (Mathworld)