Difference between revisions of "Dedekind zeta function"
From specialfunctionswiki
(Created page with "Let $F$ be a a finite field extension of the rational numbers. The Dedekind zeta function of $F$ is $$\zeta_F(z)=\displaystyle\sum_{\mathfrak{a}} N(\mathfrak{a})^{-z}...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
=References= | =References= | ||
− | [http://lanl.arxiv.org/pdf/math/0210060v4.pdf Panorama of zeta functions] | + | [http://lanl.arxiv.org/pdf/math/0210060v4.pdf Panorama of zeta functions]<br /> |
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:52, 24 May 2016
Let $F$ be a a finite field extension of the rational numbers. The Dedekind zeta function of $F$ is $$\zeta_F(z)=\displaystyle\sum_{\mathfrak{a}} N(\mathfrak{a})^{-z}; \mathrm{Re}(z)>1,$$ where the sum is over the nontrivial ideals $\mathfrak{a}$ of the ring of integers $\mathcal{O}_F$ of $F$ and $N(\mathfrak{a})$ denotes the norm of the ideal $\mathfrak{a}$.
Properties
Theorem: The following Euler product holds: $$\zeta_F(z)=\displaystyle\prod_{\mathfrak{p}} \dfrac{1}{1-N(\mathfrak{p})^{-z}},$$ where $\mathfrak{p}$ denotes a nontrivial prime ideal of $\mathcal{O}_F$.
Proof: █