Difference between revisions of "Q-Cos"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 16: Line 16:
 
=References=
 
=References=
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:55, 24 May 2016

The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

Theorem: The following formula holds: $$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$ where $D_q$ denotes the q-difference operator, $\mathrm{Cos}$ denotes the $q$-Cosine function, and $\mathrm{Sin}$ denotes the $q$-Sine function.

Proof:

References

[1]