Difference between revisions of "Nielsen-Ramanujan sequence"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ | $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ | ||
where $\log$ denotes the [[logarithm]]. | where $\log$ denotes the [[logarithm]]. | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:57, 24 May 2016
The Nielsen-Ramanujan sequence $\{a_k\}_{k=0}^{\infty}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.