Difference between revisions of "Sierpiński constant"
From specialfunctionswiki
(Created page with "The Sierpiński constant $S$ is given by $$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ where $\log$ denotes the logarithm, $\pi$ denotes [...") |
|||
Line 2: | Line 2: | ||
$$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ | $$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ | ||
where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $e$ denotes [[e]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\Gamma$ denotes the [[gamma]] function. | where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $e$ denotes [[e]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\Gamma$ denotes the [[gamma]] function. | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:00, 24 May 2016
The Sierpiński constant $S$ is given by $$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ where $\log$ denotes the logarithm, $\pi$ denotes pi, $e$ denotes e, $\gamma$ denotes the Euler-Mascheroni constant, and $\Gamma$ denotes the gamma function.