Difference between revisions of "Sierpiński constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Sierpiński constant $S$ is given by $$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ where $\log$ denotes the logarithm, $\pi$ denotes [...")
 
 
Line 2: Line 2:
 
$$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$
 
$$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$
 
where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $e$ denotes [[e]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\Gamma$ denotes the [[gamma]] function.
 
where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $e$ denotes [[e]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\Gamma$ denotes the [[gamma]] function.
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 19:00, 24 May 2016

The Sierpiński constant $S$ is given by $$S=\log \left( \dfrac{4\pi^3 e^{2\gamma}}{[\Gamma(\frac{1}{4})]^4} \right),$$ where $\log$ denotes the logarithm, $\pi$ denotes pi, $e$ denotes e, $\gamma$ denotes the Euler-Mascheroni constant, and $\Gamma$ denotes the gamma function.