Difference between revisions of "Stieltjes constants"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Stieltjes constants are defined by
 
The Stieltjes constants are defined by
 
$$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$
 
$$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$
 +
 +
=Properties=
 +
{{:Laurent series of the Riemann zeta function}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 06:13, 1 June 2016

The Stieltjes constants are defined by $$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$

Properties

Theorem

The following Laurent series holds: $$\zeta(z)=\dfrac{1}{z-1} + \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \lambda_k (z-1)^k}{k!},$$ where $\zeta$ denotes the Riemann zeta function and $\lambda_k$ denotes the Stieltjes constants.

Proof

References