Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 17: Line 17:
  
 
{{:Euler product for Riemann zeta}}
 
{{:Euler product for Riemann zeta}}
 +
{{:Laurent series of the Riemann zeta function}}
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 06:16, 1 June 2016

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ denotes Riemann zeta.

Proof

References

Theorem

The following Laurent series holds: $$\zeta(z)=\dfrac{1}{z-1} + \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \lambda_k (z-1)^k}{k!},$$ where $\zeta$ denotes the Riemann zeta function and $\lambda_k$ denotes the Stieltjes constants.

Proof

References

Proposition: Let $n$ be a positive integer. Then $$\zeta(2n)=(-1)^{n+1}\dfrac{B_{2n}(2\pi)^{2n}}{2(2n)!},$$ where $B_n$ denotes the Bernoulli numbers.

Proof:

Theorem

The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$ where $P$ denotes the Prime zeta function, $\mu$ denotes the Möbius function, $\log$ denotes the logarithm, and $\zeta$ denotes the Riemann zeta function.

Proof

References

Videos

Riemann Zeta function playlist

External links