Difference between revisions of "Weierstrass elliptic"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Weierstrass elliptic function is  
 
The Weierstrass elliptic function is  
 
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$
 
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$
 +
 +
=Videos=
 +
[https://www.youtube.com/watch?v=A8fsU97g3tg Elliptic curves and modular forms] <br />
 +
[https://www.youtube.com/watch?v=WnaUZrPnZ30 Weierstrass Elliptic Function -- adding terms]<br />
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 00:02, 2 June 2016

The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$

Videos

Elliptic curves and modular forms
Weierstrass Elliptic Function -- adding terms