Difference between revisions of "Integral representation of polygamma 2"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=-\displa...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Integral representation of polygamma 2|Theorem]]:</strong> The following formula holds: | + | <strong>[[Integral representation of polygamma 2|Theorem]]:</strong> The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: |
$$\psi^{(m)}(z)=-\displaystyle\int_0^1 \dfrac{t^{z-1}}{1-t} \log^m(t) \mathrm{d}t,$$ | $$\psi^{(m)}(z)=-\displaystyle\int_0^1 \dfrac{t^{z-1}}{1-t} \log^m(t) \mathrm{d}t,$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]] and $\log$ denotes the [[logarithm]]. | where $\psi^{(m)}$ denotes the [[polygamma]] and $\log$ denotes the [[logarithm]]. |