Difference between revisions of "Dilogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 61: Line 61:
  
 
=References=
 
=References=
 +
* {{BookReference|Polylogarithms and Associated Functions|1926|ed=2nd|edpage=Second Edition|Leonard Lewin|prev=Inscribing Regular 15-gon in Circle/Corollary|next=Definition:Leading Term}}: page 1
 +
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />
 
[http://maths.dur.ac.uk/~dma0hg/dilog.pdf The Dilogarithm function]<br />
 
[http://maths.dur.ac.uk/~dma0hg/dilog.pdf The Dilogarithm function]<br />

Revision as of 22:43, 3 June 2016

The dilogarithm is the function $$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2}; |z| \leq 1,$$ which is a special case of the polylogarithm.


Properties

Theorem: The following formula holds: $$\dfrac{d}{dx} \mathrm{Li}_2 \left( -\dfrac{1}{x} \right) = \dfrac{\log(1+\frac{1}{x})}{x}=\dfrac{\log(1+x)-\log x}{x}.$$

Proof:

Theorem: The following formula holds: $$\mathrm{Li}_2(z)=-\mathrm{Li}_2 \left( \dfrac{1}{z} \right) - \dfrac{1}{2} \left( \log(z) \right)^2 + \pi i \log(z) + \dfrac{\pi^2}{3}.$$

Proof:

Theorem: The following formula holds: $$\mathrm{Li}_2(x)+\mathrm{Li}_2(-x)=\dfrac{1}{2}\mathrm{Li}_2(x^2).$$

Proof:

Theorem: The following formula holds: $$\mathrm{Li}_2(1-x)+\mathrm{Li}_2 \left(1-\dfrac{1}{x} \right)=-\dfrac{1}{2}\left( \log x \right)^2.$$

Proof:

Theorem: The following formula holds: $$\mathrm{Li}_2(x)+\mathrm{Li}_2(1-x)=\dfrac{\pi^2}{6} - (\log x) \log(1-x).$$

Proof:

Theorem: The following formula holds: $$\mathrm{Li}_2(-x)-\mathrm{Li}_2(1-x)+\dfrac{1}{2}\mathrm{Li}_2(1-x^2)=-\dfrac{\pi^2}{12} - (\log x) \log(x+1).$$

Proof:

References

(page 31)
The Dilogarithm function
[1]