Difference between revisions of "Taylor series of sine"
Line 8: | Line 8: | ||
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
\sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ | \sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ | ||
− | &= \dfrac{1}{2i} \left[ \displaystyle\sum_{ | + | &= \dfrac{1}{2i} \left[ \displaystyle\sum_{k=0}^{\infty} \dfrac{i^k (z-z_0)^k}{k!} - \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k i^k (z-z_0)^k}{k!} \right] \\ |
− | &= \dfrac{1}{2i} \displaystyle\sum_{ | + | &= \dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k). |
\end{array}$$ | \end{array}$$ | ||
− | Note that if $ | + | Note that if $k=2n$ is a positive even integer, then |
− | $$i^ | + | $$i^k(1-(-1)^k)=i^{2n}(1-(-1)^{2n})=0,$$ |
− | and if $ | + | and if $k=2n+1$ is a positive odd integer, then |
− | $$i^ | + | $$i^k(1-(-1)^k)=i^{2n+1}(1-(-1)^{2n+1})=2i(-1)^n.$$ |
Hence we have derived | Hence we have derived | ||
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
− | \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{ | + | \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ |
− | &=\displaystyle\sum_{ | + | &=\displaystyle\sum_{k \mathrm{\hspace{2pt} odd},k>0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ |
&= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, | &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, | ||
\end{array}$$ | \end{array}$$ |
Revision as of 00:30, 4 June 2016
Theorem
Let $z_0 \in \mathbb{C}$. The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.
Proof
Using the Taylor series of the exponential function and the definition of $\sin$, $$\begin{array}{ll} \sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ &= \dfrac{1}{2i} \left[ \displaystyle\sum_{k=0}^{\infty} \dfrac{i^k (z-z_0)^k}{k!} - \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k i^k (z-z_0)^k}{k!} \right] \\ &= \dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k). \end{array}$$ Note that if $k=2n$ is a positive even integer, then $$i^k(1-(-1)^k)=i^{2n}(1-(-1)^{2n})=0,$$ and if $k=2n+1$ is a positive odd integer, then $$i^k(1-(-1)^k)=i^{2n+1}(1-(-1)^{2n+1})=2i(-1)^n.$$ Hence we have derived $$\begin{array}{ll} \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ &=\displaystyle\sum_{k \mathrm{\hspace{2pt} odd},k>0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, \end{array}$$ as was to be shown. █