Difference between revisions of "Relationship between sine, Gudermannian, and tanh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sin(\mathr...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between sine, Gudermannian, and tanh|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\sin(\mathrm{gd}(x))=\tanh(x),$$
 
$$\sin(\mathrm{gd}(x))=\tanh(x),$$
 
where $\sin$ denotes the [[sine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
 
where $\sin$ denotes the [[sine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==

Revision as of 00:41, 4 June 2016

Theorem

The following formula holds: $$\sin(\mathrm{gd}(x))=\tanh(x),$$ where $\sin$ denotes the sine, $\mathrm{gd}$ denotes the Gudermannian, and $\tanh$ denotes the hyperbolic tangent.

Proof

References