Difference between revisions of "E is limit of (1+1/n)^n"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$e = \displaystyle\lim_{n \rightarrow \infty} \left( 1 + \dfrac{1}{n} \right)^n,$$ where $e$ denotes e and $\displaystyle\lim_{n...")
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=e|next=}: 4.1.17
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=e|next=Relationship between the logarithm with base b with the logarithm}}: 4.1.17

Revision as of 06:51, 4 June 2016

Theorem

The following formula holds: $$e = \displaystyle\lim_{n \rightarrow \infty} \left( 1 + \dfrac{1}{n} \right)^n,$$ where $e$ denotes e and $\displaystyle\lim_{n \rightarrow \infty}$ denotes a limit.

Proof

References