Difference between revisions of "Erf of conjugate is conjugate of erf"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathrm{erf} \left( \overline{z} \right) = \overline{\mathrm{erf}(z)},$$ where $\mathrm{erf}$ denotes the error function and $\o...") |
|||
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function is odd|next=}}: 7.1.10 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function is odd|next=findme}}: 7.1.10 |
Latest revision as of 05:03, 5 June 2016
Theorem
The following formula holds: $$\mathrm{erf} \left( \overline{z} \right) = \overline{\mathrm{erf}(z)},$$ where $\mathrm{erf}$ denotes the error function and $\overline{z}$ denotes the complex conjugate.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 7.1.10