Difference between revisions of "Erf of conjugate is conjugate of erf"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{erf} \left( \overline{z} \right) = \overline{\mathrm{erf}(z)},$$ where $\mathrm{erf}$ denotes the error function and $\o...")
 
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function is odd|next=}}: 7.1.10
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function is odd|next=findme}}: 7.1.10

Latest revision as of 05:03, 5 June 2016

Theorem

The following formula holds: $$\mathrm{erf} \left( \overline{z} \right) = \overline{\mathrm{erf}(z)},$$ where $\mathrm{erf}$ denotes the error function and $\overline{z}$ denotes the complex conjugate.

Proof

References