Difference between revisions of "Book:Arthur Erdélyi/Higher Transcendental Functions Volume III"

From specialfunctionswiki
Jump to: navigation, search
Line 66: Line 66:
 
:::16.8. Series, integrals, and expansion problems
 
:::16.8. Series, integrals, and expansion problems
 
::SPHEROIDAL WAVE FUNCTIONS
 
::SPHEROIDAL WAVE FUNCTIONS
:::16.9.  
+
:::16.9. The differential equation of spheroidal wave functions and its solution
:::16.10.  
+
:::16.10. Further expansions, approximations, integral relations
:::16.11.  
+
:::16.11. Spheroidal wave functions
:::16.12.  
+
:::16.12. Approximations and asymptotic forms for spheroidal wave functions
:::16.13.  
+
:::16.13. Series and integrals involving spheroidal wave functions
:::16.14.  
+
::ELLIPSOIDAL WAVE FUNCTIONS
 +
:::16.14. Lamé's wave equation
 +
:::References
  
  

Revision as of 06:21, 5 June 2016


Harry Bateman: Higher Transcendental Functions, Volume III

Published $1953$, Dover Publications

ISBN 0-486-44614-X.


Online mirrors

hosted by Caltech

Contents

CONTENTS
FOREWORD
CHAPTER XIV AUTOMORPHIC FUNCTIONS
14.1. Discontinuous groups and homographic transformations
14.1.1. Homographic transformations
14.1.2. Fixed points. Classification of transformations
14.1.3. Discontinuous groups
14.1.4. Fundamental region
14.2. Definition of automorphic functions
14.3. The icosahedral group
14.4. Parabolic substitutions
14.5. Infinite cyclic group with two fixed points
14.6. Elliptic modular functions
14.6.1. The modular group
14.6.2. The modular function $\mathcal{J}(z)$
14.6.3. Subgroups of the modular group
14.6.4. Modular equations
14.6.5. Applications to number theory
14.7. General theory of automorphic functions
14.7.1. Classification of the groups
14.7.2. General theorems on automorphic functions
14.8. Existence and construction of automorphic functions
14.8.1. General remarks
14.8.2. Riemann surfaces
14.8.3. Automorphic forms, Poincaré's theta series
14.9. Uniformization
14.10. Special automorphic functions
14.10.1. The Riemann-Schwarz triangle functions
14.10.2. Burnside's automorphic functions
14.11. Hilbert's modular groups
14.12. Siegel's functions
References
CHAPTER XV LAMÉ FUNCTIONS
15.1. Introduction
15.1.1. Coordinates of confocal quadrics
15.1.2. Coordinates of confocal cones
15.1.3. Coordinates of confocal cyclides of revolution
15.2. Lamé-Wangerin functions
15.3. Heun's equation
15.4. Solutions of the general Lamé equation
15.5. Lamé functions
15.5.1. Lamé functions of real periods
15.5.2. Lamé functions of imaginary periods. Transformation formulas
15.5.3. Integral equations for Lamé functions
15.5.4. Degenerate cases
15.6. Lamé-Wangerin functions
15.7. Ellipsoidal and sphero-conal harmonics
15.8. Harmonics associated with cyclides of revolution
References
CHAPTER XVI MATHIEU FUNCTIONS, SPHEROIDAL AND ELLIPSOIDAL WAVE FUNCTIONS
16.1. Introduction
16.2. The general Mathieu equation and its solutions
16.3. Approximations, integral relations, and integral equations for solutions of the general Mathieu equation
16.4. Periodic Mathieu functions
16.5. Expansions of Mathieu functions and functions of the second kind
16.6. Modified Mathieu functions
16.7. Approximations and asymptotic forms
16.8. Series, integrals, and expansion problems
SPHEROIDAL WAVE FUNCTIONS
16.9. The differential equation of spheroidal wave functions and its solution
16.10. Further expansions, approximations, integral relations
16.11. Spheroidal wave functions
16.12. Approximations and asymptotic forms for spheroidal wave functions
16.13. Series and integrals involving spheroidal wave functions
ELLIPSOIDAL WAVE FUNCTIONS
16.14. Lamé's wave equation
References


See also

Book:Harry Bateman/Higher Transcendental Functions Volume I
Book:Harry Bateman/Higher Transcendental Functions Volume II