Difference between revisions of "Error function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
[[:Taylor series for error function]]<br />
+
[[Taylor series for error function]]<br />
 
[[Series for erf with exponential factored out]]<br />
 
[[Series for erf with exponential factored out]]<br />
 
[[Error function is odd]]<br />
 
[[Error function is odd]]<br />
 
[[Complex conjugate of argument of error function]]<br />
 
[[Complex conjugate of argument of error function]]<br />
 +
[[Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x]]<br />
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 01:49, 6 June 2016

The error function $\mathrm{erf}$ is defined by $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau.$$

Properties

Taylor series for error function
Series for erf with exponential factored out
Error function is odd
Complex conjugate of argument of error function
Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x

Theorem: The following formula holds: $\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)\mathrm{d}t.$

Proof:

Videos

The Laplace transform of the error function $\mathrm{erf}(t)$
The Error function
Video 1690 - ERF Function

References

Relating $\phi$ and erf

<center>Error functions
</center>