Difference between revisions of "Exponential"

From specialfunctionswiki
Jump to: navigation, search
Line 11: Line 11:
  
 
=Properties=
 
=Properties=
{{:Derivative of the exponential function}}
+
[[Derivative of the exponential function]]<br />
{{:Taylor series of the exponential function}}
+
[[Taylor series of the exponential function]]<br />
{{:Exponential in terms of hypergeometric 0F0}}
+
[[Exponential in terms of hypergeometric 0F0]]<br />
{{:Euler E generating function}}
+
[[Euler E generating function]]<br />
 +
[[Continued fraction for 1/sqrt(pi) integral from -infinity to infinity of e^(-t^2)/(z-t) dt]]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 03:42, 6 June 2016

The exponential function $\exp \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\exp(z) = e^z = \sum_{k=0}^{\infty} \dfrac{z^k}{k!},$$ where $e$ is the base of the natural logarithm.

Properties

Derivative of the exponential function
Taylor series of the exponential function
Exponential in terms of hypergeometric 0F0
Euler E generating function
Continued fraction for 1/sqrt(pi) integral from -infinity to infinity of e^(-t^2)/(z-t) dt