Difference between revisions of "Relationship between Anger function and Weber function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following for...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Relationship between Anger function and Weber function|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$
 
$$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$
where $\mathbf{J}_{\nu}$ denotes an [[Anger function]] and $\mathbf{E}_{\nu}$ denotes a Weber function.
+
where $\mathbf{J}_{\nu}$ denotes an [[Anger function]] and $\mathbf{E}_{\nu}$ denotes a [[Weber function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Weber function|next=Relationship between Weber function and Anger function}}: 12.3.4

Latest revision as of 04:15, 6 June 2016

Theorem

The following formula holds: $$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$ where $\mathbf{J}_{\nu}$ denotes an Anger function and $\mathbf{E}_{\nu}$ denotes a Weber function.

Proof

References