Difference between revisions of "Anger derivative recurrence"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}_{\nu-1}(z)-\mathbf{J}_{\nu+1}(z),$$ | $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}_{\nu-1}(z)-\mathbf{J}_{\nu+1}(z),$$ | ||
where $\mathbf{J}_{\nu}$ denotes the [[Anger function]]. | where $\mathbf{J}_{\nu}$ denotes the [[Anger function]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] |
Latest revision as of 05:50, 6 June 2016
Theorem
The following formula holds: $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}_{\nu-1}(z)-\mathbf{J}_{\nu+1}(z),$$ where $\mathbf{J}_{\nu}$ denotes the Anger function.