Difference between revisions of "Reciprocal gamma written as an infinite product"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for all $z \in \mathbb{C}$:
 
$$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$
 
$$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$
 
where $\dfrac{1}{\Gamma}$ is the [[reciprocal gamma]] function, and $\gamma$ is the [[Euler-Mascheroni constant]].
 
where $\dfrac{1}{\Gamma}$ is the [[reciprocal gamma]] function, and $\gamma$ is the [[Euler-Mascheroni constant]].
Line 8: Line 8:
 
==References==
 
==References==
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Gamma function written as infinite product|next=Euler-Mascheroni constant}}: §1.1 (3)
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Gamma function written as infinite product|next=Euler-Mascheroni constant}}: §1.1 (3)
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Gauss' formula for gamma function|next=Euler-Mascheroni constant}}: 6.1.3

Revision as of 07:05, 8 June 2016

Theorem

The following formula holds for all $z \in \mathbb{C}$: $$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$ where $\dfrac{1}{\Gamma}$ is the reciprocal gamma function, and $\gamma$ is the Euler-Mascheroni constant.

Proof

References