Difference between revisions of "Antiderivative of arccos"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{arccos}(z...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Antiderivative of arccos|Theorem]]:</strong> The following formula holds:  
+
The following formula holds:  
 
$$\displaystyle\int \mathrm{arccos}(z) \mathrm{d}z = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C,$$
 
$$\displaystyle\int \mathrm{arccos}(z) \mathrm{d}z = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C,$$
 
where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function and $C$ denotes an arbitrary constant.
 
where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function and $C$ denotes an arbitrary constant.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]

Revision as of 07:24, 8 June 2016

Theorem

The following formula holds: $$\displaystyle\int \mathrm{arccos}(z) \mathrm{d}z = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C,$$ where $\mathrm{arccos}$ denotes the inverse cosine function and $C$ denotes an arbitrary constant.

Proof

References