Difference between revisions of "Weierstrass factorization of sine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\sin$$(x) = x \displayst...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Weierstrass factorization of sine|Proposition]]:</strong> [[Sine|$\sin$]]$(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right)$
+
The following formula holds:
<div class="mw-collapsible-content">
+
$$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$
<strong>Proof:</strong> █
+
where $\sin$ denotes the [[sine]] function and $\pi$ denotes [[pi]].
</div>
+
 
</div>
+
==Proof==
 +
 
 +
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:32, 8 June 2016

Theorem

The following formula holds: $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ where $\sin$ denotes the sine function and $\pi$ denotes pi.

Proof

References