Difference between revisions of "Relationship between spherical Bessel y and cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds for no...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between spherical Bessel y sub nu and cosine|Theorem]]:</strong> The following formula holds for non-negative integers $n$:
+
The following formula holds for non-negative integers $n$:
 
$$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right),$$
 
$$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right),$$
 
where $y_n$ denotes the [[Spherical Bessel y sub nu|spherical Bessel function of the second kind]] and $\cos$ denotes the [[cosine]] function.
 
where $y_n$ denotes the [[Spherical Bessel y sub nu|spherical Bessel function of the second kind]] and $\cos$ denotes the [[cosine]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 07:40, 8 June 2016

Theorem

The following formula holds for non-negative integers $n$: $$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right),$$ where $y_n$ denotes the spherical Bessel function of the second kind and $\cos$ denotes the cosine function.

Proof

References