Difference between revisions of "Relationship between cosine, Gudermannian, and sech"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\cos(\mathrm{gd}(x))=\mathrm{sech}(x),$$ | $$\cos(\mathrm{gd}(x))=\mathrm{sech}(x),$$ | ||
where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]]. | where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:42, 8 June 2016
Theorem
The following formula holds: $$\cos(\mathrm{gd}(x))=\mathrm{sech}(x),$$ where $\cos$ denotes the cosine, $\mathrm{gd}$ denotes the Gudermannian, and $\mathrm{sech}$ denotes the hyperbolic secant.