Difference between revisions of "Relationship between secant, Gudermannian, and cosh"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secan...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\sec(\mathrm{gd}(x))=\cosh(x),$$ | $$\sec(\mathrm{gd}(x))=\cosh(x),$$ | ||
where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]]. | where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:46, 8 June 2016
Theorem
The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.