Difference between revisions of "Relationship between secant, Gudermannian, and cosh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secan...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>Theorem:</strong> The following formula holds:
+
The following formula holds:
 
$$\sec(\mathrm{gd}(x))=\cosh(x),$$
 
$$\sec(\mathrm{gd}(x))=\cosh(x),$$
 
where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].  
 
where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].  
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:46, 8 June 2016

Theorem

The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.

Proof

References