Difference between revisions of "Weierstrass factorization of sinh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The Weierstrass factorization of $\sinh(x)$ i...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Weierstrass factorization of sinh|Theorem]]:</strong> The [[Weierstrass factorization]] of [[sinh|$\sinh(x)$]] is  
+
The [[Weierstrass factorization]] of [[sinh|$\sinh(x)$]] is  
 
$$\sinh(x)=x\displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{x^2}{k^2\pi^2}.$$
 
$$\sinh(x)=x\displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{x^2}{k^2\pi^2}.$$
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:53, 8 June 2016

Theorem

The Weierstrass factorization of $\sinh(x)$ is $$\sinh(x)=x\displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{x^2}{k^2\pi^2}.$$

Proof

References