Difference between revisions of "Antiderivative of hyperbolic cosecant"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$ | $$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$ | ||
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]]. | where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 07:55, 8 June 2016
Theorem
The following formula holds: $$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant, $\log$ denotes the logarithm, and $\tanh$ denotes the hyperbolic tangent.