Difference between revisions of "Derivative of Legendre chi 2"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ | ||
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function. | where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 07:58, 8 June 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.