Difference between revisions of "Derivative of Legendre chi 2"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 07:58, 8 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.

Proof

References