Difference between revisions of "Catalan's constant"
From specialfunctionswiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | + | [[Catalan's constant using Dirichlet beta]]<br /> | |
− | + | [[Catalan's constant using Legendre chi]]<br /> | |
− | + | [[Catalan's constant using Hurwitz zeta]]<br /> | |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 08:00, 8 June 2016
Catalan's constant is $$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$ This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the Dirichlet beta function.
Properties
Catalan's constant using Dirichlet beta
Catalan's constant using Legendre chi
Catalan's constant using Hurwitz zeta