Difference between revisions of "Prime number theorem, logarithmic integral"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem (Prime Number Theorem):</strong> The fo...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Prime number theorem, logarithmic integral|Theorem (Prime Number Theorem)]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\mathrm{li}(x)}=1,$$
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\mathrm{li}(x)}=1,$$
 
where $\pi$ denotes the [[Prime counting|prime counting function]] and $\mathrm{li}$ denotes the [[logarithmic integral]].
 
where $\pi$ denotes the [[Prime counting|prime counting function]] and $\mathrm{li}$ denotes the [[logarithmic integral]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 08:09, 8 June 2016

Theorem

The following formula holds: $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\mathrm{li}(x)}=1,$$ where $\pi$ denotes the prime counting function and $\mathrm{li}$ denotes the logarithmic integral.

Proof

References