Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Euler product for Riemann zeta|Theorem]] (Euler Product):</strong> The following formula holds for $\mathrm{Re}(z)>1$:
+
The following formula holds for $\mathrm{Re}(z)>1$:
 
$$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
 
$$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
 
where $\zeta$ is the [[Riemann zeta function]].
 
where $\zeta$ is the [[Riemann zeta function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta)}}: § Introduction (2)
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 19:46, 9 June 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ is the Riemann zeta function.

Proof

References