Difference between revisions of "Bessel Y"

From specialfunctionswiki
Jump to: navigation, search
Line 15: Line 15:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds for $n \in \mathbb{Z}$:
 
$$Y_{-n}(z)=(-1)^nY_n(z).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
{{:Bessel J sub nu and Y sub nu solve Bessel's differential equation}}
 
 
{{:Bessel J sub nu and Y sub nu solve Bessel's differential equation (constant multiple in argument)}}
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds for $n\in\mathbb{Z}$:
 
$${\small Y_n(z)=\dfrac{2}{\pi} \left[ \log \left( \dfrac{z}{2} \right)+\gamma-\dfrac{1}{2}\displaystyle\sum_{k=1}^n \dfrac{1}{k} \right]J_n(x) - \dfrac{1}{\pi} \displaystyle\sum_{k=0}^{\infty} (-1)^k \dfrac{1}{k!(n+k)!} \left(\dfrac{z}{2}\right)^{n+2k}\displaystyle\sum_{j=1}^k \left( \dfrac{1}{j} + \dfrac{1}{j+n} \right) - \dfrac{1}{\pi}\displaystyle\sum_{k=0}^{n-1} \dfrac{(n-k-1)!}{k!} \left( \dfrac{z}{2} \right)^{-n+2k},}$$
 
where $Y_n$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]], $\log$ denotes the [[logarithm]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $J_n$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=References=
 
=References=

Revision as of 19:55, 9 June 2016

Bessel functions of the second kind $Y_{\nu}$ are defined via the formula $$Y_{\nu}(z)=\dfrac{J_{\nu}(z)\cos(\nu \pi)-J_{-\nu}(z)}{\sin(\nu \pi)}.$$ Sometimes these functions are called Neumann functions and have the notation $N_{\nu}$ instead of $Y_{\nu}$.


Properties

References

Bessel's functions of the second order - C.V. Coates

<center>Bessel functions
</center>