Difference between revisions of "Scorer Hi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Scorer $\mathrm{Hi}$ function is a solution of the [[differential equation]] $y''(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula
 
The Scorer $\mathrm{Hi}$ function is a solution of the [[differential equation]] $y''(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula
$$\mathrm{Hi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \exp \left( -\dfrac{t^3}{3}+xt \right)dt.$$
+
$$\mathrm{Hi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \exp \left( -\dfrac{t^3}{3}+xt \right)\mathrm{d}t.$$
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Scorerhiplot.png|Graph of $\mathrm{Hi}$.
 +
File:Complexscorerhi.png|[[Domain coloring]] of $\mathrm{Hi}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
{{:Relationship between Scorer Hi and Airy functions}}
+
[[Relationship between Scorer Hi and Airy functions]]<br />
  
 
=See Also=
 
=See Also=
Line 9: Line 16:
 
[[Airy Bi]]<br />
 
[[Airy Bi]]<br />
 
[[Scorer Gi]]<br >
 
[[Scorer Gi]]<br >
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 23:00, 9 June 2016

The Scorer $\mathrm{Hi}$ function is a solution of the differential equation $y(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula $$\mathrm{Hi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \exp \left( -\dfrac{t^3}{3}+xt \right)\mathrm{d}t.$$

Properties

Relationship between Scorer Hi and Airy functions

See Also

Airy Ai
Airy Bi
Scorer Gi