Difference between revisions of "Value of Ai'(0)"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Ga...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$ | $$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$ | ||
where $\mathrm{Ai}$ denotes the [[Airy Ai]] function and $\Gamma$ denotes the [[gamma]] function. | where $\mathrm{Ai}$ denotes the [[Airy Ai]] function and $\Gamma$ denotes the [[gamma]] function. | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
− | + | ||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 23:06, 9 June 2016
Theorem
The following formula holds: $$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$ where $\mathrm{Ai}$ denotes the Airy Ai function and $\Gamma$ denotes the gamma function.