Difference between revisions of "Jacobi P"

From specialfunctionswiki
Jump to: navigation, search
(\lef)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are defined by
+
Let $\alpha > -1$ and $\beta > -1$. The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are [[orthogonal polynomials]] with [[weight function]] $w(x)=(1-x)^{\alpha}(1-x)^{\beta}$ on the interval $[-1,1]$ that obey $P_n^{(\alpha,\beta)}(1) = {{n + \alpha} \choose n}$.
 
$$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$
 
$$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$
 
where ${}_2F_1$ is the [[Hypergeometric pFq|generalized hypergeometries series]].
 
where ${}_2F_1$ is the [[Hypergeometric pFq|generalized hypergeometries series]].
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
<strong>Theorem:</strong> ([[Rodrigues' formula]]) The following formula holds:
+
[[Differential equation for Jacobi P]]<br />
$$P_n^{(\alpha,\beta)}(z)=\dfrac{(-1)^n}{2^nn!} (1-z)^{-\alpha}(1+z)^{-\beta} \dfrac{d^n}{dz^n} \left[(1-z)^{\alpha}(1+z)^{\beta}(1-z^2)^n \right].$$
+
 
<div class="mw-collapsible-content">
+
=References=
<strong>Proof:</strong> █
+
* {{BookReference|Orthogonal Polynomials|1975|Gabor Szegő|edpage = Fourth Edition|prev=findme|next=findme}}: page 58
</div>
 
</div>
 
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 03:30, 11 June 2016

Let $\alpha > -1$ and $\beta > -1$. The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are orthogonal polynomials with weight function $w(x)=(1-x)^{\alpha}(1-x)^{\beta}$ on the interval $[-1,1]$ that obey $P_n^{(\alpha,\beta)}(1) = {{n + \alpha} \choose n}$. $$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$ where ${}_2F_1$ is the generalized hypergeometries series.

Properties

Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Differential equation for Jacobi P

References

Orthogonal polynomials