Difference between revisions of "Integral representation of polygamma 2"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=-\displa...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: | |
$$\psi^{(m)}(z)=-\displaystyle\int_0^1 \dfrac{t^{z-1}}{1-t} \log^m(t) \mathrm{d}t,$$ | $$\psi^{(m)}(z)=-\displaystyle\int_0^1 \dfrac{t^{z-1}}{1-t} \log^m(t) \mathrm{d}t,$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]] and $\log$ denotes the [[logarithm]]. | where $\psi^{(m)}$ denotes the [[polygamma]] and $\log$ denotes the [[logarithm]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 06:32, 11 June 2016
Theorem
The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: $$\psi^{(m)}(z)=-\displaystyle\int_0^1 \dfrac{t^{z-1}}{1-t} \log^m(t) \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $\log$ denotes the logarithm.