Difference between revisions of "Polygamma series representation"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Polygamma series representation|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\psi^{(m)}(z)=(-1)^{m+1} m! \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{(z+k)^{m+1}},$$
 
$$\psi^{(m)}(z)=(-1)^{m+1} m! \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{(z+k)^{m+1}},$$
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]].
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 06:34, 11 June 2016

Theorem

The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{(z+k)^{m+1}},$$ where $\psi^{(m)}$ denotes the polygamma and $m!$ denotes the factorial.

Proof

References