Difference between revisions of "Relation between polygamma and Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ where $\psi^{(m)}$ de...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>Theorem:</strong> The following formula holds:
+
The following formula holds:
 
$$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$
 
$$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $\zeta$ denotes the [[Hurwitz zeta]] function.
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $\zeta$ denotes the [[Hurwitz zeta]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 06:34, 11 June 2016

Theorem

The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ where $\psi^{(m)}$ denotes the polygamma and $\zeta$ denotes the Hurwitz zeta function.

Proof

References