Difference between revisions of "Polygamma multiplication formula"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for either the pair $\delta=1, m=0$ or $\delta=0, m>0$: $$\psi^{(m)}(nz)=\delta \log(n)+\dfrac{1}{n^{m+1}} \displaystyle\sum_{k=0}^{n-1...")
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Polygamma reflection formula|next=}}: 6.4.8
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Polygamma reflection formula|next=findme}}: 6.4.8
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 20:25, 11 June 2016

Theorem

The following formula holds for either the pair $\delta=1, m=0$ or $\delta=0, m>0$: $$\psi^{(m)}(nz)=\delta \log(n)+\dfrac{1}{n^{m+1}} \displaystyle\sum_{k=0}^{n-1} \psi^{(n)} \left( z + \dfrac{k}{n} \right),$$ where $\psi^{(m)}$ denotes the polygamma function and $\log$ denotes the logarithm.

Proof

References