Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
Line 24: Line 24:
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]
  
<center>{{:*-integral functions footer}}</center>
+
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:09, 11 June 2016

The exponential integral functions $E_n$ are defined by $$E_1(z) = \displaystyle\int_1^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t, \quad \left|\mathrm{arg \hspace{2pt}}z\right|<\pi,$$ and $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$

Properties

Relationship between the exponential integral and upper incomplete gamma function

Videos

Laplace transform of exponential integral

References

Exponential Integral and Related Functions

$\ast$-integral functions