Difference between revisions of "Relationship between Airy Bi and modified Bessel I"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
The following formula holds: | The following formula holds: | ||
$$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ | $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ | ||
where $\mathrm{Bi}$ denotes the [[Airy Bi]] function and $I_{\nu}$ denotes the [[Modified Bessel I sub nu|modified Bessel $I$]]. | where $\mathrm{Bi}$ denotes the [[Airy Bi]] function and $I_{\nu}$ denotes the [[Modified Bessel I sub nu|modified Bessel $I$]]. | ||
− | === | + | ==Proof== |
+ | |||
+ | ==References== | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:16, 16 June 2016
Theorem
The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.