Difference between revisions of "Book:Thomas Ernst/A Comprehensive Treatment of q-Calculus"
From specialfunctionswiki
(Created page with "{{Book|A Comprehensive Treatment of q-Calculus|2012|Springer Basel||Thomas Ernst}} ===Contents=== :Introduction ::1.1 A survey of the chapters ::1.2 What is $q$-calculus? :::...") |
|||
Line 84: | Line 84: | ||
:::4.3.10 Euler symbolic formula | :::4.3.10 Euler symbolic formula | ||
:::4.3.11 Complementary argument theorems | :::4.3.11 Complementary argument theorems | ||
+ | ::4.4 $q$-Lucas and $q$-G polynomials | ||
+ | :::4.4.1 $q$-Lucas numbers | ||
+ | :::4.4.2 The $q$-G polynomials | ||
+ | :::4.4.3 Lucas and $G$ polynomials of negative order | ||
+ | :::4.4.4 Expansion formulas | ||
+ | ::4.5 The semiring of Ward numbers | ||
+ | :5 $q$-Stirling numbers | ||
+ | ::5.1 Introduction | ||
+ | ::5.2 The Hahn-Cigler-Carlitz-Johnson approach | ||
+ | ::5.3 The Carlitz-Gould approach | ||
+ | ::5.4 The Jackson $q$-derivative as difference operator | ||
+ | ::5.5 Applications | ||
+ | :6 The first $q$-functions | ||
+ | ::6.1 $q$-analogue, $q$-factorial, tilde operator | ||
+ | ::6.2 The $q$-derivative | ||
+ | ::6.3 The $q$-integral | ||
+ | ::6.4 Two other tilde operators | ||
+ | ::6.5 The Gaussian $q$-binomial coefficients and the $q$-Leibniz theorem | ||
+ | :::6.5.1 Other formulas | ||
+ | ::6.6 Cigler's operational method for $q$-identities | ||
+ | ::6.7 Gould and Carlitz $q$-binomial coefficient identities | ||
+ | ::6.8 $q$-Exponential and $q$-trigonometric functions | ||
+ | ::6.9 The Heine function | ||
+ | ::6.10 Oscillations in $q$-analysis | ||
+ | ::6.11 The Jackson-Hahn-Cigler $q$-addition and $q$-analogues of the trigonometric functions | ||
+ | :::6.11.1 Further $q$-trigonometric functions | ||
+ | ::6.12 The Nalli-Ward-Al-Salam $q$-addition and some variants of the $q$-difference operator | ||
+ | ::6.13 Weierstraß elliptic functions and sigma functions | ||
+ | :::6.13.1 Elliptic functions | ||
+ | :::6.13.2 Connections with the $\Gamma_q$ function | ||
+ | ::6.14 The Chen-Liu operator or parameter augmentation | ||
+ | :7 $q$-hypergeometric series | ||
+ | ::7.1 Definition of the $q$-hypergeometric series | ||
+ | :::7.1.1 $q$-difference equation for ${}_{p+1}\phi_p$ | ||
+ | ::7.2 | ||
+ | ::7.3 | ||
+ | ::7.4 | ||
+ | ::7.5 | ||
+ | ::7.6 | ||
+ | ::7.7 | ||
+ | ::7.8 | ||
+ | ::7.9 | ||
+ | ::7.10 | ||
+ | ::7.11 | ||
+ | ::7.12 | ||
+ | ::7.13 | ||
+ | ::7.14 | ||
+ | ::7.15 | ||
+ | ::7.16 | ||
+ | ::7.17 | ||
+ | ::7.18 | ||
+ | ::7.19 | ||
+ | ::7.20 | ||
+ | ::7.21 | ||
+ | ::7.22 | ||
+ | ::7.23 | ||
+ | ::7.24 | ||
+ | |||
[[Category:Books]] | [[Category:Books]] |
Revision as of 17:04, 16 June 2016
Thomas Ernst: A Comprehensive Treatment of q-Calculus
Published $2012$, Springer Basel.
Contents
- Introduction
- 1.1 A survey of the chapters
- 1.2 What is $q$-calculus?
- 1.2.1 Elementary series manipulation
- 1.3 Update on $q$-calculus
- 1.3.1 Current textbooks on this subject
- 1.3.2 Comparison with complex analysis
- 1.4 Comparison with nonstandard analysis
- 1.5 Comparison with the units of physics
- 1.6 Analogies between $q$-analysis and analysis
- 1.7 The first $q$-functions
- 2 The different languages of $q$-calculus
- 2.1 Schools --- traditions
- 2.2 Ramifications and minor Schools
- 2.2.1 Different notations
- 2.3 Finite differences and Bernoulli numbers
- 2.4 Umbral calculus, interpolation theory
- 2.5 Elliptic and Theta Schools and notations, the oldest roots -- the $q$-forerunners
- 2.6 Trigonometry, prosthaphaeresis, logarithms
- 2.7 The development of calculus
- 2.8 The Faulhaber mathematics
- 2.9 Descartes, Leibniz, Hindenburg, Arbogast
- 2.10 The Fakultäten
- 2.11 Königsberg School
- 2.12 Viennese School
- 2.13 Göttingen School
- 2.14 The combinatorial School: Gudermann, Grünert
- 2.15 Heidelberg School
- 2.16 Weierstraß, formal power series and the $\Gamma$ function
- 2.17 Halle $q$-analysis School
- 2.18 Jakob Friedrich Fries, Martin Ohm, Babbage, Peacock and Herschel
- 2.19 Different styles in $q$-analysis
- 3 Pre $q$-Analysis
- 3.1 The early connection between analytic number theory and $q$-series
- 3.2 Some aspects of combinatorial identities
- 3.2.1 Faà di Bruno formula
- 3.3 The duality between Bernoulli and Stirling numbers
- 3.4 Tangent numbers, Euler numbers
- 3.5 The occurrence of binomial coefficient identities in the literature
- 3.6 Nineteenth century: Catalna, Grigoriew, Imchenetsky
- 3.7 A short history of hypergeometric series
- 3.7.1 The $\Gamma$ function
- 3.7.2 Balanced and well-poised hypergeometric series
- 3.7.3 Fractional differentiation
- 3.7.4 Newton, Taylor, Stirling, Montmort
- 3.7.5 Euler's contribution
- 3.7.6 Vandermonde and Pfaffian summation formulas
- 3.7.7 Conic sections in the seventeenth century
- 3.7.8 The infinity in England
- 3.7.9 The infinity in the hands of Euler
- 3.7.10 The infinity, the binomial coefficients
- 3.7.11 Gauß' contribution
- 3.7.12 After Gauß: Clausen, Jacobi
- 3.7.13 Kummer's contribution
- 3.7.14 Cauchy, Riemann, Heine, Thomae, Papperitz
- 3.7.15 1800-1914; Sonine, Goursat, Stieltjes, Schafheitlin, Pochhammer, Mellin
- 3.7.16 First half of the twentieth century; England, USA
- 3.7.17 Special functions defined by integrals
- 3.7.18 Second half of the twentieth century
- 3.8 The Jacobi theta functions; different notations; properties
- 3.9 Meromorphic continuation and Riemann surfaces
- 3.10 Wave equation
- 3.11 Orthogonal polynomials
- 3.11.1 Legendre-d'Allonville-Murphy polynomials
- 3.11.2 Laguerre-Abel-Sonine-Murphy-Chebyshev-Halphen-Szegő polynomials
- 3.11.3 Jacobi polynomials
- 3.11.4 Hermite polynomials
- 4 The $q$-umbral calculus and semigroups. The Nørlund calculus of finite differences
- 4.1 The $q$-umbral calculus and semigroups
- 4.2 Finite differences
- 4.3 $q$-Appell polynomials
- 4.3.1 The generalized $q$-Bernoulli polynomials
- 4.3.2 The Ward $q$-Bernoulli numbers
- 4.3.3 The generalized JHC $q$-Bernoulli polynomials
- 4.3.4 NWA $q$-Euler polynomials
- 4.3.5 The NWA generalized $q$-Euler numbers
- 4.3.6 Several variables; $n$ negative
- 4.3.7 $q$-Euler-Maclaurin expansions
- 4.3.8 JHC polynomials of many variables; negative order
- 4.3.9 JHC $q$-Euler-Maclaurin expansions
- 4.3.10 Euler symbolic formula
- 4.3.11 Complementary argument theorems
- 4.4 $q$-Lucas and $q$-G polynomials
- 4.4.1 $q$-Lucas numbers
- 4.4.2 The $q$-G polynomials
- 4.4.3 Lucas and $G$ polynomials of negative order
- 4.4.4 Expansion formulas
- 4.5 The semiring of Ward numbers
- 5 $q$-Stirling numbers
- 5.1 Introduction
- 5.2 The Hahn-Cigler-Carlitz-Johnson approach
- 5.3 The Carlitz-Gould approach
- 5.4 The Jackson $q$-derivative as difference operator
- 5.5 Applications
- 6 The first $q$-functions
- 6.1 $q$-analogue, $q$-factorial, tilde operator
- 6.2 The $q$-derivative
- 6.3 The $q$-integral
- 6.4 Two other tilde operators
- 6.5 The Gaussian $q$-binomial coefficients and the $q$-Leibniz theorem
- 6.5.1 Other formulas
- 6.6 Cigler's operational method for $q$-identities
- 6.7 Gould and Carlitz $q$-binomial coefficient identities
- 6.8 $q$-Exponential and $q$-trigonometric functions
- 6.9 The Heine function
- 6.10 Oscillations in $q$-analysis
- 6.11 The Jackson-Hahn-Cigler $q$-addition and $q$-analogues of the trigonometric functions
- 6.11.1 Further $q$-trigonometric functions
- 6.12 The Nalli-Ward-Al-Salam $q$-addition and some variants of the $q$-difference operator
- 6.13 Weierstraß elliptic functions and sigma functions
- 6.13.1 Elliptic functions
- 6.13.2 Connections with the $\Gamma_q$ function
- 6.14 The Chen-Liu operator or parameter augmentation
- 7 $q$-hypergeometric series
- 7.1 Definition of the $q$-hypergeometric series
- 7.1.1 $q$-difference equation for ${}_{p+1}\phi_p$
- 7.2
- 7.3
- 7.4
- 7.5
- 7.6
- 7.7
- 7.8
- 7.9
- 7.10
- 7.11
- 7.12
- 7.13
- 7.14
- 7.15
- 7.16
- 7.17
- 7.18
- 7.19
- 7.20
- 7.21
- 7.22
- 7.23
- 7.24
- 7.1 Definition of the $q$-hypergeometric series