Difference between revisions of "Weierstrass factorization of cosh"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The Weierstrass factorization of $\cosh(x)$ i...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The [[Weierstrass factorization]] of [[cosh|$\cosh(x)$]] is | |
$$\cosh x = \displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{4x^2}{(2k-1)^2\pi^2}.$$ | $$\cosh x = \displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{4x^2}{(2k-1)^2\pi^2}.$$ | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:00, 17 June 2016
Theorem
The Weierstrass factorization of $\cosh(x)$ is $$\cosh x = \displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{4x^2}{(2k-1)^2\pi^2}.$$