Difference between revisions of "Polylogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
The polylogarithm $\mathrm{Li}_s$ is defined by the formula
 
The polylogarithm $\mathrm{Li}_s$ is defined by the formula
 
$$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$
 
$$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$
Line 13: Line 14:
  
 
=Properties=
 
=Properties=
{{:Lerch transcendent polylogarithm}}
+
[[Lerch transcendent polylogarithm]]<br />
{{:Legendre chi in terms of polylogarithm}}
+
[[Legendre chi in terms of polylogarithm]]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 16:33, 20 June 2016

The polylogarithm $\mathrm{Li}_s$ is defined by the formula $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ A special case of the polylogarithm with $s=2$ is called a dilogarithm.

Videos

polylogarithm function

Properties

Lerch transcendent polylogarithm
Legendre chi in terms of polylogarithm