Difference between revisions of "Derivative of zeta at -1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\zeta'(-1)=\dfrac{1}{12}-\log(A...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of zeta at -1|Proposition]]:</strong> The following formula holds:  
+
The following formula holds:  
 
$$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$
 
$$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$
 
where $\zeta$ denotes the [[Riemann zeta function]], $A$ denotes the [[Glaisher–Kinkelin constant]], and $\log$ denotes the [[logarithm]].
 
where $\zeta$ denotes the [[Riemann zeta function]], $A$ denotes the [[Glaisher–Kinkelin constant]], and $\log$ denotes the [[logarithm]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 20:20, 20 June 2016

Theorem

The following formula holds: $$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$ where $\zeta$ denotes the Riemann zeta function, $A$ denotes the Glaisher–Kinkelin constant, and $\log$ denotes the logarithm.

Proof

References