Difference between revisions of "Derivative of zeta at -1"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\zeta'(-1)=\dfrac{1}{12}-\log(A...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$ | $$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$ | ||
where $\zeta$ denotes the [[Riemann zeta function]], $A$ denotes the [[Glaisher–Kinkelin constant]], and $\log$ denotes the [[logarithm]]. | where $\zeta$ denotes the [[Riemann zeta function]], $A$ denotes the [[Glaisher–Kinkelin constant]], and $\log$ denotes the [[logarithm]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 20:20, 20 June 2016
Theorem
The following formula holds: $$\zeta'(-1)=\dfrac{1}{12}-\log(A),$$ where $\zeta$ denotes the Riemann zeta function, $A$ denotes the Glaisher–Kinkelin constant, and $\log$ denotes the logarithm.