Difference between revisions of "Spherical Bessel j"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel J sub nu|Bess...")
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The spherical Bessel function of the first kind is defined by
 
The spherical Bessel function of the first kind is defined by
 
$$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$
 
$$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
+
where $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]].
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Domcolsphericalbesseljsub0.png|[[Domain coloring]] of $j_0$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
[[Relationship between spherical Bessel j sub nu and sine]]<br />
 +
 
 +
=References=
 +
 
 +
{{:Bessel functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 22:44, 20 June 2016

The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel function of the first kind.

Properties

Relationship between spherical Bessel j sub nu and sine

References

Bessel functions