Difference between revisions of "Book:Edmund Taylor Whittaker/A course of modern analysis/Third edition"
From specialfunctionswiki
Line 39: | Line 39: | ||
:LIST OF AUTHORS QUOTED | :LIST OF AUTHORS QUOTED | ||
:GENERAL INDEX | :GENERAL INDEX | ||
− | + | [[Category:Book]] | |
− | [[Category: |
Latest revision as of 16:39, 21 June 2016
Edmund Taylor Whittaker and George Neville Watson: A course of modern analysis
Published $1920$, Cambridge University Press.
Online versions
Contents
- PART I. THE PROCESSES OF ANALYSIS
- Chapter I Complex Numbers
- Chapter II The Theory of Convergence
- Chapter III Continuous Functions and Uniform Convergence
- Chapter IV The Theory of Riemann Integration
- Chapter V The fundamental properties of Analytic Functions; Taylor's, Laurent's, and Liouville's Theorems
- Chapter VI The Theory of Residues; application to the evaluation of Definite Integrals
- Chapter VII The expansion of functions in Infinite Series
- Chapter VIII Asymptotic Expansions and Summable Series
- Chapter IX Fourier Series and Trigonometrical Series
- Chapter X Linear Differential Equations
- Chapter XI Integral Equations
- PART II. THE TRANSCENDENTAL FUNCTIONS
- Chapter XII The Gamma Function
- Chapter XIII The Zeta Function of Riemann
- Chapter XIV The Hypergeometric Function
- Chapter XV Legendre Functions
- Chapter XVI The Confluent Hypergeometric Function
- Chapter XVII Bessel Functions
- Chapter XVIII The Equations of Mathematical Physics
- Chapter XIX Mathieu Functions
- Chapter XX Elliptic Functions, General theorems of the Weierstrassian Functions
- Chapter XXI The Theta Functions
- Chapter XXII The Jacobian Elliptic Functions
- Chapter XXIII Ellipsoidal Harmonics and Lamé's Equation
- APPENDIX
- LIST OF AUTHORS QUOTED
- GENERAL INDEX